Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Res Notes ; 15(1): 357, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2153662

ABSTRACT

OBJECTIVE: We evaluated the sensitivity and specificity of the Panbio™ COVID-19 Ag rapid test device using nasal swabs and those of the SSf-COVID19 kit, one of RT-PCR tests, using saliva specimens. These tests were compared with RT-PCR tests using nasopharyngeal swabs for the diagnosis of SARS-CoV-2 infection. The three diagnostic tests were simultaneously conducted for patients aged ≥ 18 years, who were about to be hospitalized or had been admitted for COVID-19 confirmed by RT-PCR in two research hospitals from August 20 to October 29, 2021. Nasal swabs were tested using the Panbio™ COVID-19 Ag rapid test device. More than 1 mL of saliva was self-collected and tested using the SSf-COVID19 kit. RESULTS: In total, 157 patients were investigated; 124 patients who were about to be hospitalized and 33 patients already admitted for COVID-19. The overall sensitivity and specificity of the Panbio™ COVID-19 Ag rapid test device with nasal swabs were 64.7% (95% confidence interval [CI] 47.9-78.5%) and 100.0% (95% CI 97.0-100.0%), respectively. The median time to confirm a positive result was 180 s (interquartile range 60-255 s). The overall sensitivity and specificity of the SSf-COVID19 kit with saliva specimens were 94.1% (95% CI 80.9-98.4%) and 100.0% (95% CI 97.0-100.0%), respectively.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Hospitalization , Saliva , Hospitals , Sensitivity and Specificity , Nasopharynx
2.
Virulence ; 13(1): 1242-1251, 2022 12.
Article in English | MEDLINE | ID: covidwho-1956537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have been emerging. However, knowledge of temporal and spatial dynamics of SARS-CoV-2 is limited. This study characterized SARS-CoV-2 evolution in immunosuppressed patients with long-term SARS-CoV-2 shedding for 73-250 days, without specific treatment. We conducted whole-genome sequencing of 27 serial samples, including 26 serial samples collected from various anatomic sites of two patients and the first positive sample from patient 2's mother. We analysed the intrahost temporal dynamics and genomic diversity of the viral population within different sample types. Intrahost variants emerging during infection showed diversity between individual hosts. Remarkably, N501Y, P681R, and E484K, key substitutions within spike protein, emerged in vivo during infection and became the dominant population. P681R, which had not yet been detected in the publicly available genome in Korea, appeared within patient 1 during infection. Mutually exclusive substitutions at residues R346 (R346S and R346I) and E484 (E484K and E484A) of spike protein and continuous turnover of these substitutions occurred. Unique genetic changes were observed in urine samples. A household transmission from patient 2 to his mother, at least 38 days after the diagnosis, was characterized. Viruses may differently mutate and adjust to the host selective pressure, which could enable the virus to replicate efficiently for fitness in each host. Intrahost variants could be candidate variants likely to spread to the population eventually. Our findings may provide new insights into the dynamics of SARS-CoV-2 in response to interactions between the virus and host.


Subject(s)
COVID-19 , Immunocompromised Host , SARS-CoV-2 , Virus Shedding , COVID-19/transmission , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Whole Genome Sequencing
4.
Proteomics ; 21(11-12): e2000278, 2021 06.
Article in English | MEDLINE | ID: covidwho-1212777

ABSTRACT

In managing patients with coronavirus disease 2019 (COVID-19), early identification of those at high risk and real-time monitoring of disease progression to severe COVID-19 is a major challenge. We aimed to identify potential early prognostic protein markers and to expand understanding of proteome dynamics during clinical progression of the disease. We performed in-depth proteome profiling on 137 sera, longitudinally collected from 25 patients with COVID-19 (non-severe patients, n = 13; patients who progressed to severe COVID-19, n = 12). We identified 11 potential biomarkers, including the novel markers IGLV3-19 and BNC2, as early potential prognostic indicators of severe COVID-19. These potential biomarkers are mainly involved in biological processes associated with humoral immune response, interferon signalling, acute phase response, lipid metabolism, and platelet degranulation. We further revealed that the longitudinal changes of 40 proteins persistently increased or decreased as the disease progressed to severe COVID-19. These 40 potential biomarkers could effectively reflect the clinical progression of the disease. Our findings provide some new insights into host response to SARS-CoV-2 infection, which are valuable for understanding of COVID-19 disease progression. This study also identified potential biomarkers that could be further validated, which may support better predicting and monitoring progression to severe COVID-19.


Subject(s)
COVID-19 , Host-Pathogen Interactions/genetics , Proteome , Transcriptome/genetics , Aged , Biomarkers/blood , COVID-19/diagnosis , COVID-19/genetics , COVID-19/metabolism , Disease Progression , Female , Gene Expression Profiling , Humans , Longitudinal Studies , Male , Middle Aged , Prognosis , Proteome/analysis , Proteome/genetics , Proteome/metabolism , Proteomics
5.
Sci Rep ; 10(1): 22418, 2020 12 29.
Article in English | MEDLINE | ID: covidwho-997951

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over forty million patients worldwide. Although most coronavirus disease 2019 (COVID-19) patients have a good prognosis, some develop severe illness. Markers that define disease severity or predict clinical outcome need to be urgently developed as the mortality rate in critical cases is approximately 61.5%. In the present study, we performed in-depth proteome profiling of undepleted plasma from eight COVID-19 patients. Quantitative proteomic analysis using the BoxCar method revealed that 91 out of 1222 quantified proteins were differentially expressed depending on the severity of COVID-19. Importantly, we found 76 proteins, previously not reported, which could be novel prognostic biomarker candidates. Our plasma proteome signatures captured the host response to SARS-CoV-2 infection, thereby highlighting the role of neutrophil activation, complement activation, platelet function, and T cell suppression as well as proinflammatory factors upstream and downstream of interleukin-6, interleukin-1B, and tumor necrosis factor. Consequently, this study supports the development of blood biomarkers and potential therapeutic targets to aid clinical decision-making and subsequently improve prognosis of COVID-19.


Subject(s)
Blood Proteins/analysis , COVID-19/blood , Severity of Illness Index , Adult , Aged , Biomarkers/blood , COVID-19/mortality , COVID-19/pathology , Chromatography, High Pressure Liquid , Complement Activation/immunology , Cytokines/blood , Gene Expression Profiling , Humans , Mass Spectrometry , Middle Aged , Neutrophil Activation/immunology , Platelet Activation/immunology , Proteome/metabolism , SARS-CoV-2 , Suppressor Factors, Immunologic/blood , T-Lymphocytes/immunology
6.
Clin Infect Dis ; 73(9): e3002-e3008, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-939552

ABSTRACT

BACKGROUND: Positive results from real-time reverse-transcription polymerase chain reaction (rRT-PCR) in recovered patients raise concern that patients who recover from coronavirus disease 2019 (COVID-19) may be at risk of reinfection. Currently, however, evidence that supports reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been reported. METHODS: We conducted whole-genome sequencing of the viral RNA from clinical specimens at the initial infection and at the positive retest from 6 patients who recovered from COVID-19 and retested positive for SARS-CoV-2 via rRT-PCR after recovery. A total of 13 viral RNAs from the patients' respiratory specimens were consecutively obtained, which enabled us to characterize the difference in viral genomes between initial infection and positive retest. RESULTS: At the time of the positive retest, we were able to acquire a complete genome sequence from patient 1, a 21-year-old previously healthy woman. In this patient, through the phylogenetic analysis, we confirmed that the viral RNA of positive retest was clustered into a subgroup distinct from that of the initial infection, suggesting that there was a reinfection of SARS-CoV-2 with a subtype that was different from that of the primary strain. The spike protein D614G substitution that defines the clade "G" emerged in reinfection, while mutations that characterize the clade "V" (ie, nsp6 L37F and ORF3a G251V) were present at initial infection. CONCLUSIONS: Reinfection with a genetically distinct SARS-CoV-2 strain may occur in an immunocompetent patient shortly after recovery from mild COVID-19. SARS-CoV-2 infection may not confer immunity against a different SARS-CoV-2 strain.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Phylogeny , RNA, Viral/genetics , Reinfection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL